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Abstract
Contrary to homogeneous WSNs, heterogeneous WSN protocols make use of sensor fork 
with a variety of capabilities to extend the network’s life, improve cluster stability, and 
assure accurate information transfer. Even though numerous authors have put forth various 
protocols, none of them have been able to successfully balance power consumption among 
basic fork, advanced fork, and cluster heads according to application needs and localiza-
tion. Improving system longevity and performance requires reducing power consumption 
by sensor fork. While the location of the base station is known, each protocol arranges 
the sensor fork at random. Cluster head selection, set-up, and steady state phases are the 
standard three processes in the protocols. Depending on the network design, each proto-
col’s decision-making process considers the node’s remaining power as well as the sys-
tem’s total power. This study examines partitioning or cluster strategies based on power 
remaining and contrasts them in terms of a numerals of facets, including power effective-
ness and stability duration.
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List of Symbols
Eelec  Power for transmitting 1 bit
Efs  Free space power
Eamp  Amplification power
EDA  Power for data aggregation
D0  Threshold interval
E0  Original power of the normal fork

1 Introduction

Wireless Sensor Networks (WSNs) have emerged as a cutting-edge technology with enor-
mous potential for revolutionizing many facets of our life in the age of connectivity and 
ubiquitous computing. These networks are made up of tiny, self-contained sensor fork hav-
ing wireless communication, processing, and sensing capabilities. They work together to 
collect data from the environment, process it locally, and send it to a base station or central 
node. Real-time monitoring, analysis, and control of physical and environmental facets are 
made possible by this comprehensive data collection in a variety of applications [1]. The 
developments in microelectronics, wireless communication technologies, and the rising 
demand for effective monitoring and control systems have all contributed to the develop-
ment and dissemination of WSNs. Numerous industries, including environmental monitor-
ing, industrial automation, healthcare, agriculture, smart cities, and more use these net-
works. WSNs offer previously unattainable opportunities for data collection from remote 
and hostile areas by placing a large numeral of small sensors in the target area [2]. WSNs’ 
wireless nature, which eliminates the need for a major cabling infrastructure and enables 
simple deployment and reconfiguration, is one of their most important advantages. The 
processing, storage, and communication capabilities of the sensor fork are often restricted 
and they run on batteries. The development of effective protocols and algorithms for data 
communication, power management, and network optimization presents special problems 
because of these resource constraints [3].

Numerous industries, including environmental monitoring, industrial automation, 
healthcare, agriculture, smart cities, and more use these networks. WSNs offer previously 
unattainable opportunities for data collection from remote and hostile areas by placing a 
large numeral of small sensors in the target area. WSNs’ wireless nature, which eliminates 
the need for a major cabling infrastructure and enables simple deployment and reconfigura-
tion, is one of their most important advantages [4]. The processing, storage, and commu-
nication capabilities of the sensor fork are often restricted and they run on batteries. The 
development of effective protocols and algorithms for data communication, power manage-
ment, and network optimization presents special problems because of these resource con-
straints. We will go into the difficulties WSNs encounter and investigate the cutting-edge 
fixes suggested in the literature. Understanding the complexities of WSNs will help us real-
ize their full potential and open the door for their widespread adoption across a variety of 
sectors, bringing about a world that is smarter and more connected [5].

Homogeneous and heterogeneous networks are combined in WSNs. Power usage and 
resource restrictions are both heavily influenced by routing algorithms. Due to their limited 
power resources, sensor fork needs computational power and sensing capabilities. Strong 
routing algorithms are required to increase scalability, reliability, and time efficiency and 
extend the system lifetime of WSNs [6].
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Wireless sensor networks (WSNs) are composed of small sensors distributed throughout 
the network. These sensors could sense data, process it, and transmit it from one node to 
another. They are utilized in various applications such as military operations, weather fore-
casting, industrial areas, medical services, and agriculture, among others, for data trans-
mission. These sensors are compact in size and powered by limited batteries. Once 
deployed in harsh and inaccessible environments, they must be utilized efficiently since 
they cannot be easily replaced or recharged [7]. Fork in the network consume power for 
sensing and transmitting data to the base station. Efforts have been made to maximize the 
overall lifespan of the network by conserving the power of the sensors. Liank et al. pro-
posed a mechanism known as the Huang mechanism, which aims to balance power utiliza-
tion across the network by selecting optimal clusters. However, this mechanism is complex 
and can potentially block the channel when dealing with large data packet sizes [8]. On the 
other hand, Cardei et al. introduced the TianD mechanism, where sensor fork is organized 
in disjoint sets to cover the maximum range. Compared to the Huang mechanism, the 
TianD mechanism is less complex but lacks the ability to detect duplicate fork and data. 
The main challenges in wireless sensor networks can be categorized into three sections: 
power efficiency, quality of service, and security. Optimization mechanisms are employed 
in WSNs to address these challenges, including optimizing sensor coverage, data aggrega-
tion, power-efficient partitioning or cluster and routing, and sensor localization [9]. These 
issues are interconnected, meaning that addressing one problem may require trade-offs 
with the network’s lifespan. Similarly, achieving security may also impact the network’s 
longevity. Focusing on individual problems separately leads to unresolved loopholes. 
Therefore, to create a balanced wireless sensor network, an optimized mechanism that 
simultaneously addresses all these problems is needed. This can be achieved by developing 
a multipurpose function and employing an appropriate optimizer mechanism [10]. When 
selecting the appropriate mechanisms, various facets such as problem type, time con-
straints, resource availability, and desired accuracy are considered. Researchers have uti-
lized different approaches, including classical approaches and swarm intelligence-based 
approaches, inspired by nature, to enhance the network’s performance. In the literature, 
various mechanisms have been proposed to tackle specific issues in wireless sensor net-
works, such as Optimal Scope, Data Aggregation, Power Efficient Partitioning or cluster, 
Power Efficient Routing, and Sensor Localization. Routing protocols define how fork com-
municate with each other and how information is transported between locations [8, 9]. 
These methods can be classified into three categories: 1. Centralized Algorithms: These 
algorithms are uncommon due to the impracticality and cost associated with transmitting 
the system’s status to a single node. 2. Scattered Algorithms: Communication is achieved 
through memo passing. 3. Local-based Algorithms: These algorithms operate within spe-
cific areas, constrained or contiguous. They store local information on a single node and 
run the algorithm exclusively on that node, utilizing the locally cached data. Wireless Sen-
sor System routing protocols need to meet specific standards due to limitations within the 
system. These standards include: 1. Autonomy: Wireless sensor networks (WSNs) operate 
in a decentralized manner without a centralized organization making routing decisions. 
This lack of well-defined routing procedures makes WSNs vulnerable to potential attacks. 
2. Power Efficiency: Routing protocols should be designed to maximize the system’s lifes-
pan and maintain efficient communication between fork. As sensor fork are often placed in 
inaccessible locations, it becomes challenging to replace their batteries. 3. Scalability: 
With WSNs consisting of hundreds of fork, routing protocols must effectively handle the 
large numerals of fork within the system. 4. Resilience: Routing protocols need to establish 
alternative paths for data transmission in case certain fork become non-functional due to 
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facets like external influences or battery depletion. 5. Device Heterogeneity: The diversity 
of sensor forks in terms of processing power, transceivers, power units, and bandwidth 
allows for different routing strategies suitable for WSNs. 6. Mobility Adaptability: Wire-
less sensor systems face the challenge of node mobility, as some applications require fork 
to accommodate movement. Routing protocols should incorporate provisions to handle 
such mobility requirements. 7. Complexity: Due to hardware limitations and power con-
straints, routing strategies should strike a balance between functionality and system perfor-
mance to avoid excessive complexity that could hinder the wireless system’s performance. 
The use of partitioning or cluster algorithms has been widely acknowledged in the litera-
ture as an effective means of reducing power consumption in fork, while also enhancing 
system performance and scalability. With advancements in micro electro mechanical sen-
sors and input from researchers, there has been an increase in the deployment of dense and 
cost-effective sensor fork. Wireless Sensor Networks (WSNs) find applications in various 
fields such as military, traffic monitoring, agriculture, healthcare, surveillance, disaster 
relief, and more. Partitioning or cluster plays a crucial role in balancing the power con-
sumption within the environment. In this approach, the cluster head collects and relays 
aggregated information to the base station [7, 8, 10]. Only long-range sensors are required 
to transmit data directly to the base station, thereby prolonging the system’s operational 
duration. Partitioning or cluster can be implemented in two types of environments: homo-
geneous, where sensor fork is in proximity and possess similar power capabilities, and het-
erogeneous, where fork exhibit varying power levels [9, 10]. Researchers have proposed 
several protocols for the homogeneous environment, such as Threshold Sensitive Power 
Efficient Sensor Environment (TEEN), Adaptive Threshold-sensitive Power Efficient Envi-
ronment (APTEEN), Hybrid Power-Efficient Distributed partitioning or cluster (HEED), 
Low-Power Adaptive Partitioning or cluster Hierarchy (LEACH), among others. WSNs 
typically comprise a combination of both homogeneous and heterogeneous networks [3]. 
Routing algorithms play a critical role in resource management, particularly power con-
sumption. Sensor fork face limitations in terms of power availability, computational capac-
ity, and network awareness. Hence, robust routing algorithms are necessary to prolong sys-
tem life, enhance scalability, and ensure reliable network operations [4]. In terms of 
heterogeneous resources in WSNs, three main categories can be identified: power, link, and 
computation. Power heterogeneity is characterized by different power levels among fork, 
including two-level, three-level, or multi-level configurations. Routing methods optimize 
network performance by assigning power-intensive tasks to high-power sensors. Link het-
erogeneity allows for diverse forms of interaction between sensor fork, such as bidirec-
tional or unidirectional communication. Several techniques leverage link heterogeneity to 
improve network lifespan and reduce delays. Cognitive heterogeneity considers the varying 
hardware capabilities of sensor fork to handle more complex tasks, while accounting for 
traffic diversity [5]. The following paragraphs discuss the impact of heterogeneity on wire-
less sensor networks (WSNs), addressing the differences between diverse and homogene-
ous networks. Diverse wireless sensor networks tend to have a longer network lifetime, as 
the variability in link quality, computing capabilities, and power consumption directly 
influence their performance Network health is evaluated based on the numerals of active 
fork, the selection of cluster heads, packets transmitted through the central station, and the 
stability of network timing [6, 7]. The equilibrium period represents the cycle during which 
the first fork fail, while system time indicates the integrity of the network and correlates 
with the lifespan of sensing fork. The numerals of active fork in each round, determined by 
the remaining power, reflects the numerals of fork still functioning. Capacity refers to the 
numerals of packets delivered either from a regular network to a cluster leader or from a 
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cluster head to the sink node [8]. The selection of cluster heads is influenced by the trans-
missions received by the base station, favoring sensor fork with higher remaining power 
and proximity to the sink station [9]. Node heterogeneity plays a role in determining the 
throughput and latency of data transmission from source to destination. Cluster-based het-
erogeneous algorithms can be classified using various parameters. In a heterogeneous envi-
ronment, there are fewer hops between the source and destination, resulting in a higher 
end-to-end delivery rate compared to a homogeneous environment [6, 7].

1.1  Types of Heterogeneous Resources

The idea of heterogeneous resources is significant when it comes to resource allocation 
in many systems, including computer networks and distributed computing environments. 
Resources that differ in their capabilities, competencies, or traits are referred to as het-
erogeneous resources [11]. These variations can affect a wide range of facets, including 
processing speed, memory size, network bandwidth, storage space, and power supply. In 
many computing systems, effective resource management and optimization depend on an 
understanding of the different types of heterogeneous resources.

a. Processing Resources: A system’s processing resources include its available comput-
ing power. They consist of various processors or computer units with diverse speeds, 
architectures, and capacities. A system might include general-purpose processors, high-
performance multi-core processors, specialized accelerators (such GPUs or FPGAs), 
or even low-power embedded processors. Each processing resource has strengths and 
weaknesses, therefore using these resources effectively calls for load balancing and 
sophisticated scheduling strategies [12].

b. Memory Resources: A system’s memory resources are its available memory devices’ 
performance and storage capabilities. A variety of memory structures, including as 
registers, caches, main memory (RAM), and secondary storage (hard drives or solid-
state drives), are included in these resources. Memory resource heterogeneity results 
from differences in capacity, access latency, bandwidth, and durability. The efficiency 
of memory utilization and data placement techniques can have a big impact on system 
performance [13].

c. Network Resources: A system’s or a network’s communication architecture is referred to 
as a network resource. They include distinct network topologies, multiple communica-
tion links, such as wired or wireless connections, and various bandwidth capacity [14, 
15]. Different transmission speeds, latency, reliability, and QoS (Quality of Service) 
facets lead to heterogeneous network resources. Routing algorithms, congestion con-
trol systems, and bandwidth distribution plans are all necessary for effective network 
resource usage.

d. Storage Resources: A system’s storage resources are its storage devices’ performance 
and capacity. Local hard drives, network-attached storage (NAS), and cloud-based stor-
age systems are some examples of these gadgets. Disparities in capacity, access latency, 
throughput, durability, and fault tolerance cause heterogeneity in storage resources. Data 
management strategies, replication tactics, and data placement algorithms all play a role 
in the efficient use of storage resources [16, 17].

e. Power Resources: A system’s devices or fork’ ability to get electricity and how much 
of it they use depends on its power resources. Heterogeneity in power resources occurs 
in battery-powered systems as a result of differences in battery capacity, component 
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power consumption rates, and power harvesting abilities. In order to increase the sys-
tem’s operating lifetime, efficient power management approaches are required, such as 
dynamic power scaling, duty cycling, and power-aware job scheduling [18].

For the creation of resource management rules, scheduling algorithms, and optimization 
strategies in varied computing environments, it is essential to comprehend the types and 
characteristics of heterogeneous resources. System designers and resource managers can 
boost performance, usage, and overall efficiency in a variety of computer systems by utiliz-
ing the advantages of various resources and adjusting to their constraints [19].

1.2  Impact of Heterogeneity on WSN

Wireless Sensor Networks (WSNs)’ functionality and performance are significantly shaped 
by heterogeneity. Multiple effects on WSNs may result from the existence of various sensor 
fork with various capabilities, features, and resource limitations include:

a. Better resource usage is made possible by WSN heterogeneity. Based on their strengths, 
individual fork with distinct skills might be given particular jobs. For instance, fork with 
more processing capacity can tackle complex computations, whilst fork with less power 
can concentrate on easier jobs. Task distribution in this way optimizes resource use and 
boosts overall network performance [20].

b. Network Lifetime: The network lifetime of WSNs is directly impacted by the heterogene-
ity in power resources. Power resources will be used up by fork at varied rates depending 
on their power capacity and consumption rates. Power-aware approaches can be used 
to increase the network lifetime by utilizing the heterogeneity. While fork with lesser 
power can be put into a sleep mode to save power, fork with higher power can take on 
more demanding duties [21].

c. Data Processing and Fusion: Data processing and fusion in WSNs are impacted by 
heterogeneity in processing speeds and memory sizes. Data fusion and analysis tasks 
can be completed by fork with differing levels of computing capability [22].

d. Heterogeneity in transmission power and communication range has an impact on the 
connectivity and coverage of WSNs. Wider network coverage can be provided by fork 
with various communication ranges, enabling improved connectivity and data collecting 
from a variety of locations. Due to its heterogeneity, the network is able to successfully 
handle communication difficulties including obstructions and signal strength changes 
and adapt to changing environmental conditions [23].

e. Heterogeneity improves WSNs’ fault tolerance and dependability in terms of both. The 
heterogeneous architecture of the network enables unaffected fork to make up for the 
loss by taking over the duties of failing fork in the event of node failures or malfunctions. 
By placing fork with comparable functionality, redundancy can be added, guaranteeing 
that the network can still function in the event of a breakdown [24, 25].

f. Application Specificity: Due to their heterogeneity, WSNs may accommodate a variety 
of applications and circumstances. Application-specific specifications for sensing capa-
bilities, computing power, and communication range may exist. Because heterogeneous 
resources are present, WSNs are more adaptable and suitable to a variety of domains 
because they can be customized and adjusted to meet the needs of certain applications 
[26].
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The effects of heterogeneity in WSNs must be carefully considered during the design and 
optimization phases. In WSNs, effective resource management, increased power efficiency, 
and higher overall performance can be attained by utilizing the strengths and capabilities of 
various fork.

1.3  Types of Node Heterogeneity in HWSN

Heterogeneous Wireless Sensor Networks (HWSNs) exhibit various forms of heteroge-
neity, primarily stemming from the diversity of sensor fork. This fork possesses distinct 
capabilities, characteristics, or functionalities, resulting in different types of heterogeneity 
within HWSNs. The following are common forms of node heterogeneity found in HWSNs:

a. Sensing Heterogeneity: HWSN fork display variations in sensing capabilities, includ-
ing the use of different sensor types such as temperature, humidity, light, or pressure 
sensors. Moreover, fork may differ in sensing range, resolution, or sampling rates. This 
heterogeneity allows the network to capture diverse environmental parameters and ena-
bles specialized monitoring of specific aspects [16, 17].

b. Processing Heterogeneity: HWSN fork vary in processing capabilities due to differences 
in computational power, processing speed, or memory capacity. Some fork possesses 
greater computational resources for complex calculations or data processing tasks, while 
others have limited capabilities suited for simpler tasks [18].

c. Communication Heterogeneity: Heterogeneity in communication capabilities is promi-
nent among HWSN fork. It encompasses variations in communication range, transmis-
sion power, or supported communication protocols. This heterogeneity enables fork to 
have different communication capacities, ensuring efficient data exchange and network 
connectivity [19].

d. Power Heterogeneity: Power heterogeneity refers to variations in power resources among 
sensor fork in HWSNs. Fork may have different battery capacities or power consump-
tion rates, leading to disparities in their power levels. Managing power-heterogeneous 
fork requires techniques that balance power consumption, extend network lifetime, and 
prevent power-depleted fork [20].

e. Mobility Heterogeneity: Some HWSNs feature fork with differing mobility patterns 
and capabilities. Mobile fork can move within the network, collecting data from vari-
ous locations or performing specific tasks. Mobility heterogeneity allows for dynamic 
network topology, adaptable data collection, and distributed monitoring in environments 
with freely moving fork [21].

f. Data Processing Heterogeneity: HWSN fork possess varying data processing capabili-
ties, resulting from differences in their ability to process and analyze collected data. 
Advanced processing algorithms or data fusion techniques may be present in some 
fork, enabling sophisticated data processing tasks, while others have limited processing 
capabilities [22].

The presence of these forms of node heterogeneity in HWSNs brings both challenges and 
opportunities. Effective management of heterogeneous fork involves designing customized 
algorithms, protocols, and resource allocation strategies to leverage the diverse capabilities 
of the fork, optimize resource utilization, enhance network performance, and enable effi-
cient data collection and analysis in HWSNs.



 A. Jyoti et al.

1 3

Key Contribution: By introducing dynamic cluster formation based on energy levels 
and distance from the base station, the proposed method ensures even energy distribution 
across the network and increases network longevity. In order to reduce energy-intensive 
transmissions and facilitate effective data aggregation, cluster head selection takes energy 
levels and proximity into account. Concise announcements are sent through reliable 
cluster maintenance procedures, which also reduce overhead and latency while improv-
ing end-to-end delay and total network throughput. The algorithm’s flexibility allows for 
smooth transition between real-time reporting and energy-efficient aggregation for prompt 
data transmission. Our method regularly beats LEACH, SEP, and HEED through thor-
ough simulations and evaluations, excelling in active nodes, energy consumption, end-
to-end latency, and throughput, demonstrating its potential to dramatically improve WSN 
performance.

2  Literature Survey

The authors recognize that there are earlier survey articles on Wireless Sensor Networks 
(WSNs) that give thorough overviews of the industry. However, they draw attention to the 
paper’s particular emphasis on addressing problems with WSN power usage. Their goal 
is to categorize routing protocols according to how they communicate with base stations 
(BS) and the variables utilized to make routing decisions, with a focus on power conserva-
tion and balance. However, other studies, such those in [27, 28], provide a broader view on 
WSNs by going through a variety of applications and the influences on their design. These 
studies examine communication architecture, examine routing methods across various 
communication layers, and offer potential WSN research axes as a conclusion. A taxon-
omy addressing power-efficient and power-balanced routing protocols is presented in this 
research, which focuses on power consumption optimization challenges. A different survey 
[11] categorizes routing methods used in WSNs into three categories: flat, hierarchical, and 
location-based routing. Additionally, it takes into account metrics for negotiation-based, 
QoS-based, and multipath routing. The survey compares different routing algorithms in-
depth, highlighting their advantages and disadvantages in terms of reducing power con-
sumption and communication overhead. This work, in contrast, focuses on a survey of con-
temporary power-efficient and power-balanced routing methods. The taxonomy presented 
in this research is based on the communication method and the choice facets used to create 
these routing algorithms.

Overall, by focusing on power-efficient and power-balanced routing methods in WSNs, 
the authors want to add to the body of knowledge. Their taxonomy and analysis provide 
insights into various communication and decision-making modalities employed in these 
protocols, ultimately aiming to optimize power usage. The surveys described in [29–31] 
are acknowledged by the authors since they offer insightful information on a variety of 
WSN-related topics, such as routing protocols, WSNs as a whole, and power conservation. 
However, they draw attention to the paper’s special focus on WSN power usage optimi-
zation during network data transmission. According to different quality of service (QoS) 
needs, the examined routing methods in [29] are divided into data-centric, hierarchical, and 
location-based groups. In contrast, this research focuses exclusively on power-efficient and 
power-balanced routing protocols with the goal of reducing sensor node (SN) power con-
sumption and extending network lifetime. The decision facets employed in the routing algo-
rithms and the different types of solutions or algorithms are the basis for the categorization 
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in this study. A basic overview of WSNs, including uses, difficulties, and research advance-
ments, is given in [30]. The internal platform and operating system, communication proto-
col stack, and network services and deployment are how the authors categorize the difficul-
ties. In contrast, this research focuses primarily on how SNs in WSNs might optimize their 
power use. It examines the research on power-efficient and power-balanced routing proto-
cols and offers a categorization based on the channel used to communicate with the base 
station (BS), the kind of solution or algorithm, and the design parameters for each routing 
method. The survey in [31] focuses on power saving in WSNs, especially looking at how 
much power SN hardware components utilize. The authors break down the power use for 
the power supply unit, radio, computation, and sensor subsystems.

They present a taxonomy that divides power-saving plans into mobility-based, duty-
cycling, and data-driven categories. when power conservation is important, this study 
places a focus on reducing power use when network data is being sent. It offers classifi-
cation and research guidelines for this particular field and focuses on power-efficient and 
power-balanced routing techniques. The goal of this research is to optimize power usage 
throughout the network data transmission phase in WSNs. It does this by providing a 
focused analysis of power-efficient and power-balanced routing algorithms. It provides a 
taxonomy of these protocols and outlines future research options for increasing network 
functionality and longevity.

The surveys referenced in literature, which offer insightful information on many aspects 
of power-efficient and clustered routing protocols for WSNs, are acknowledged by the 
authors. They draw attention to their paper’s unique focus on power-efficient and power-
balanced routing protocols, as well as its categorization according to the communication 
method utilized to reach the base station (BS) and the decision facets employed in the rout-
ing algorithms. According to performance concerns and metrics like QoS requirements and 
data delivery models, the survey in [32] focuses on power-efficient routing methods for 
wireless multimedia sensor networks (WMSNs).

This study emphasizes the need of dependable power balancing by considering power-
efficient and power-balanced routing methods in addition to WMSNs. An extensive over-
view of swarm intelligence-based routing protocols in WSNs is presented in [33], which 
also introduces a new taxonomy for categorization. Swarm intelligence-based routing is 
the topic of [33], but this work analyzes swarm intelligence-based power-efficient and 
power-balanced routing protocols, classifying them based on the input decision variables 
employed in the algorithms. Data-centric, hierarchical, and location-based routing are the 
three categories used by the studies in [4, 34] to categorize power-efficient routing methods 
for WSNs.

By addressing both power-efficient and power-balanced routing methods, this research, 
however, broadens the topic. For the BS and decision variables utilized in the algorithms, it 
presents a taxonomy based on the form of communication, offering insightful comparisons. 
[10] gives a comprehensive introduction of WSNs, outlining uses, difficulties, and recent 
research advances. This research concentrates on power consumption concerns during the 
network data transmission phase, while [10] focuses on the general elements of WSNs. It 
offers guidance for interested researchers by introducing a taxonomy for power-efficient 
and power-balanced routing methods.

The studies conducted in [6] encompass a wide range of partitioning or cluster rout-
ing protocols for WSNs, categorizing them according to their goals, guiding principles, 
and cluster formation techniques. This work covers power-efficient and power-balanced 
partitioning or cluster routing algorithms and acknowledges the value of partitioning or 
cluster approaches for reducing power consumption. Additionally, it divides the protocols 
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into groups according on how they communicate with the BS and distinguishes between 
equal and unequal clustered routing techniques. In conclusion, this work offers a careful 
analysis. of power-efficient and power-balanced routing protocols, taking into account both 
partitioning or cluster routing techniques and routing protocols for WSNs. It provides a 
categorization based on the cluster size formulation, decision facets, and communication 
style. The objective is to offer beneficial insights and potential research paths in the subject 
of power to scholars and practitioners.

3  Clustering Algorithms

In Wireless Sensor Networks (WSNs), partitioning or clustering is a crucial procedure that 
includes organizing sensor nodes into clusters in order to enhance different aspects of net-
work performance. These clusters provide for effective data gathering, communication, and 
resource management and are often directed by a cluster head or leader. In WSNs, parti-
tioning or clustering is primarily used to cut down on power consumption, increase net-
work scalability, prolong network lifetime, and improve system performance [23].

Cluster in WSNs has a number of benefits. The first benefit is that it permits localized 
data aggregation inside clusters, which lowers the volume of data transfer and saves elec-
tricity. Cluster heads gather information from member forks, carry out fusion or aggrega-
tion processes, and then send compiled data to the base station or higher-level fork. With 
this hierarchical structure, redundant data transmission is reduced, network congestion is 
lessened, and bandwidth usage is maximized [32].

Second, partitioning makes WSNs’ routing and communication more effective. In order 
to transmit information between the member fork and the base station, cluster heads serve 
as an intermediary. The network can get beyond the individual fork’s constrained com-
munication range by using multi-hop communication among clusters. With this strategy, 
long-distance transmission power consumption is decreased, and network connection and 
dependability are increased generally [33].

Thirdly, partitioning enables load balancing and resource management in WSNs. Clus-
ter heads distribute tasks, allocate resources, and coordinate activities among member fork 
within their respective clusters. By intelligently assigning roles and responsibilities, parti-
tioning or cluster helps balance the computational and power workload across the network, 
preventing fork from becoming overloaded and ensuring efficient resource utilization [34].

Cluster algorithms and protocols in WSNs vary depending on specific objectives and 
application characteristics. Common approaches include hierarchical partitioning or clus-
ter, such as LEACH (Low-Power Adaptive Partitioning or cluster Hierarchy), where cluster 
heads are probabilistically selected, and centralized partitioning or cluster, where a central 
entity assigns fork to clusters based on specific criteria. Distributed algorithms, like HEED 
(Hybrid Power-Efficient Distributed partitioning or cluster), enable fork to self-organize 
into clusters based on local information [35, 36].

In summary, partitioning or cluster plays a crucial role in optimizing WSNs by organ-
izing sensor fork into logical groups. It facilitates localized data aggregation, efficient com-
munication, load balancing, and resource management. These advantages lead to increased 
network scalability, higher power efficiency, and longer network lifetime. A key design 
and optimization strategy for WSNs is partitioning or clustering, which allows for efficient 
resource management and improves overall network performance across a range of appli-
cation areas.
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3.1  Cluster Schemes

Homogeneous environments and heterogeneous environments are the two categories into 
which partitioning or cluster techniques may be divided. In the section that follows, proto-
cols created especially for heterogeneous environments are discussed, and a comparison is 
performed based on the number of forks that are alive, the number of forks that are dead, 
and the number of cluster heads that are chosen every round.

3.1.1  Hybrid Power‑Efficient Distributed Partitioning or Cluster (HEED)

A partitioning or cluster technique particularly designed for Wireless Sensor Networks 
(WSNs) is known as Hybrid Power-Efficient Distributed Partitioning or cluster (HEED) 
[37]. The general flow of the HEED algorithm is shown in Fig.  1. By balancing power 
usage throughout the sensor fork and optimizing power consumption, HEED’s main goal is 
to increase network longevity. This is achieved by dynamically generating clusters based on 
both node- and network-level data, allowing for effective resource management and alloca-
tion. Because HEED is distributed, each sensor node has the autonomy to choose the clus-
ter configuration and cluster head on its own. In many WSN contexts, this decentralized 
strategy guarantees scalability and adaptability. The algorithm incorporates two key facets 
into its decision-making process: residual power and node proximity. Each sensor node 
in HEED calculates a heuristic value termed the "Node’s Degree of Electability" (ND). 
This value reflects a node’s suitability or eligibility to become a cluster head. The ND is 
determined based on the node’s residual power, with fork possessing higher power levels 
being more likely to be elected as cluster heads. To achieve a well-balanced distribution 
of cluster heads, HEED introduces a threshold called the "Power Percentage" (Ep). Fork 
compares their calculated ND values with a randomly generated numerals between 0 and 

Fig. 1  HEED protocol sequence diagram
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1. If the ND exceeds Ep, the node assumes the role of a cluster head; otherwise, it becomes 
a member of an existing cluster or remains uncluttered. The value of Ep allows for a trade-
off between network lifetime and network stability, providing flexibility in achieving the 
desired performance goals. Furthermore, HEED takes into account node proximity dur-
ing the partitioning or cluster process. Sensor fork exchange information regarding their 
ND values and distances to potential cluster heads. Leveraging this information, each node 
evaluates its connectivity to potential cluster heads and selects the cluster head that offers 
the strongest connectivity, thus promoting efficient data routing and communication within 
the network. The cluster formation process in HEED is iterative, enabling the network to 
adapt to changes in power levels and connectivity over time. The algorithm is periodically 
executed to update cluster heads and cluster memberships. This periodic reconfiguration 
ensures a balanced distribution of power consumption, preventing certain fork from being 
overburdened and enhancing the network’s stability and longevity. Cluster heads are also 
periodically reassigned to different fork, promoting fairness and load balancing within the 
network. HEED has garnered substantial attention in the research community and has been 
extensively studied. It has demonstrated promising results in significantly prolonging the 
network lifetime of WSNs. By dynamically selecting power-efficient cluster heads and 
facilitating balanced power utilization, HEED effectively addresses power constraints in 
WSNs, thereby enhancing the overall performance and longevity of the network.

3.2  Distributed Weight‑Based Power‑Efficient Hierarchical Partitioning or Cluster 
(DWEHC)

The DWEHC method, proposed by Ding et  al. [38], was developed after studying the 
HEED protocol. Distributed Weight-Based Power-Efficient Hierarchical Partitioning or 
cluster (DWEHC) is a partitioning or cluster algorithm specifically designed for Wireless 
Sensor Networks (WSNs). DWEHC aims to optimize power consumption and extend the 
network lifetime by forming hierarchical clusters in a distributed manner. Figure 2 depicts 
the overall process of DWEHC algorithm.

In DWEHC, each sensor node independently makes decisions regarding cluster forma-
tion and cluster head selection based on a weight-based approach. The algorithm considers 
two main facets: residual power and node weight. Residual power represents the remain-
ing power level of a sensor node, indicating its power availability. Higher residual power 
forks are more likely to be chosen as cluster heads since they could be able to function for 
longer. Node weight, which measures a node’s significance in the network, may be deter-
mined based on factors including its position, connectedness to other forks, and its dis-
tance from the sink node. Due to their importance in network operations, forks with greater 
weights are more likely to be chosen as cluster heads. The distributed technique used by 
DWEHC allows forks to communicate with one another about their remaining power and 
node weight. Each node creates a Combined Weighted Value (CWV) based on this data, 
which takes both node weight and residual power into account. The CWV is used to assess 
a node’s suitability for the position of cluster head. Forks are more likely to act as cluster 
leaders if their CWV levels are greater. DWEHC uses a multi-level strategy to establish a 
hierarchical segmentation or cluster structure. At the top level, the fork with the greatest 
CWV values is chosen as the cluster head. The surviving fork then merges into the cluster 
of the closest cluster head. In order to create various layers of clusters within the network, 
this procedure is done repeatedly. Cluster leaders are in charge of collecting data from 
their member fork and relaying it to the base station or higher-level fork. The hierarchical 
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structure aids DWEHC in lowering power usage by aggregating data and localizing pro-
cessing within each cluster. It promotes effective network resource use and makes load bal-
ancing across forks easier. By taking use of closer communication channels, the multi-level 
hierarchy facilitates efficient data routing. As DWEHC is distributed and does not rely on 
a central controller or global network knowledge, it enables scalability and adaptability in 
WSNs. Each node makes a separate decision based on its own knowledge, which increases 
the algorithm’s flexibility and robustness under changing network circumstances.

DWEHC’s efficiency in reducing power consumption, extending network lifetime, 
and enhancing WSN performance overall has been thoroughly examined and assessed. 
DWEHC is a useful partitioning or cluster technique for many WSN applications because 
it improves power efficiency, load balancing, and scalable operation in WSNs by using a 
weight-based approach and creating hierarchical clusters.

3.2.1  Hybrid Partitioning or Cluster Approach (HCA)

The main goals of Neamatollahi et al.’s 2011 [39] proposal of HCA was to increase system 
lifespan and minimize power usage. Figure 3 shows the whole HCA algorithm procedure.

The advantages of both centralized and distributed partitioning or cluster techniques are 
combined in the Hybrid Partitioning or Cluster Approach (HCA), a partitioning or cluster 
methodology created for Wireless Sensor Networks (WSNs).

By combining the advantages of both strategies, HCA seeks to maximize network per-
formance, power efficiency, and scalability. A two-phase partitioning or clustering proce-
dure is used by HCA. Initial cluster construction in the first phase is handled by a cen-
tralized entity known as the Cluster Head Election (CHE) node or base station. The CHE 
node gathers data from every sensor fork in the network and selects the first cluster head 
depending on variables like residual power, distance from the base station, or node density. 
This centralized phase offers global knowledge for effective cluster head selection and aids 

Fig. 2  DWEHC protocol sequence diagram
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in the establishment of an initial hierarchical structure. The second stage of HCA adopts a 
distributed methodology after the initial clusters and cluster heads are built. The processes 
inside the cluster are coordinated at this phase by each cluster head in communication with 
its member fork. The cluster leaders act as local coordinators and manage resources, route 
traffic, and aggregate data for their own clusters. This distributed phase supports load bal-
ancing, scalability, and network situation adaptation.

HCA delivers various benefits in WSNs by combining the benefits of both centralized 
and distributed approaches:

a. Power Efficiency: The HCA’s first centralized phase enables effective cluster head selec-
tion based on power-related factors. Selecting cluster heads with higher residual power 
will encourage balanced power use and increase network longevity. Following the dis-
persed phase, localized data aggregation is ensured, decreasing the need for energy-
intensive long-distance transmission, and enhancing power efficiency.

b. Scalability: In large-scale WSNs, scalability is made possible by the mix of centralized 
and distributed stages in HCA. While the succeeding dispersed phase permits independ-
ent and localized activities inside each cluster, the early centralized phase makes it easier 
to create an initial hierarchical structure. This network’s management and organization 
are made easier and more effective by the hierarchical and distributed architecture, 
which can accommodate more sensor nodes.

c. Fault Tolerance: By using a distributed strategy in the second phase, HCA gains the 
advantages of fault tolerance. A adjacent fork can independently elect a new cluster head 
inside its own cluster if a cluster head fails or becomes unavailable. By improving the 
network’s robustness and tolerance to node failures, these self-healing capabilities.

d. Adaptability: The network can adjust to shifting network circumstances and require-
ments thanks to the mix of centralized and distributed phases in HCA. While the dis-

Fig. 3  HCA protocol sequence diagram
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tributed phase enables dynamic modifications and reconfiguration inside clusters, the 
centralized phase gives global knowledge and aids initial deployment. HCA can adjust 
to changing power levels, node outages, or alterations in network architecture thanks to 
its flexibility.

In the context of WSNs, HCA has been investigated and assessed, proving its efficacy in 
attaining power efficiency, scalability, fault tolerance, and flexibility. HCA offers a com-
plete solution for partitioning or clustering in WSNs by using a hybrid method that blends 
centralized and distributed techniques, addressing the particular needs and difficulties of 
such networks.

The setup phase, partitioning or cluster process, and data aggregation phase are all 
shown in this sequence diagram as well as their interactions with one another in the Hybrid 
Partitioning or Cluster Approach (HCA) protocol. It demonstrates how the base station, 
cluster heads, and sensor fork interact.

3.2.2  Power‑Efficient Unequal Partitioning or Cluster (EEUC)

Li et  al.’s "An Power-Efficient Unequal Partitioning or cluster Mechanism for Wireless 
Sensor Networks" [40] innovative technique was put out to solve the problem of hotspots 
in multi-hop routing when the cluster head is close to the sink station. The EEUC Protocol 
Sequence Diagram is shown in Fig. 4. Cluster heads close to the sink station have more 
system traffic than those farther away, which causes them to lose power more quickly.

To mitigate this hotspot problem, the authors introduced an algorithm that creates clus-
ters of unequal sizes, with smaller clusters formed closer to the sink station to reduce power 
consumption during intra-cluster communication. The cluster formation process involves 

Fig. 4  EEUC protocol sequence diagram
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the base station sending hello messages to all fork, enabling them to estimate their distance 
from the base station. This distance information is then utilized to create clusters of vary-
ing sizes. During the data gathering process, the cluster head rotates among the sensor fork 
and collects power utilization information throughout the system. As the distance from the 
cluster head to the sink station decreases, the cluster size is dynamically adjusted to be 
smaller. The authors conducted an analysis of the algorithm, demonstrating that the utiliza-
tion of unequal cluster sizes improves the system’s lifetime and achieves a more balanced 
power consumption compared to the LEACH and HEED protocols. In terms of commu-
nication complexity, the proposed algorithm, EEUC, exhibits a lower complexity of O(N) 
for cluster creation compared to HEED. Unlike the HEED protocol, EEUC minimizes 
the numerals of message iterations required by cluster heads. The probability of two fork 
becoming cluster heads is significantly reduced in EEUC. By reducing the interval between 
the first node’s death and the last node’s death in multi-hop routing within a partitioning 
or cluster method, EEUC effectively resolves the hotspot problem. The unequal partition-
ing or cluster mechanism in EEUC enhances the network lifetime when compared to the 
LEACH and HEED protocols. The proposed algorithm’s main phases and interactions are 
depicted in the sequence diagram. It illustrates the cluster formation phase, data gathering 
phase, and communication phase, showcasing the interactions between sensor fork, cluster 
heads, and the base station.

3.2.3  Energy‑Efficient Partitioning or Cluster Scheme (EECS)

Ye et  al. [41] proposed a procedure for power-efficient and load-balanced partitioning 
or cluster in wireless sensor networks to facilitate periodic data collection. The protocol 
involves the selection of cluster heads based on their outstanding power, similar to the 
LEACH protocol. Figure 5 depicts the EECS Protocol Sequence Diagram.

During the cluster head selection process, candidate fork compete among themselves to 
become the head of the cluster. In the cluster formation phase, the sink station broadcasts 
hello messages to all fork, allowing them to compute their distance from the sink based on 
signal strength indicators.

In the cluster head selection stage, candidate fork are chosen with a probability T to 
become CANDIDATE fork. Once a node becomes a CANDIDATE node, it broadcasts a 
COMPETE_HEAD_MSG to other fork within its radio range (Rcompete). Upon receiv-
ing the COMPETE_HEAD_MSG, competing fork compare their remaining power with the 
received remaining power of the node. If the received residual power is greater, the com-
peting node withdraws from the competition without transmitting a COMPLETE_HEAD_
MSG. Otherwise, the node is selected as the cluster head. This process utilizes local neigh-
borhood communication based on remaining power for cluster head selection.

In the cluster establishment stage, cluster head fork broadcast HEAD_AD_MSG to all 
base fork. Each base node decides whether to join the cluster based on the distance crite-
ria specified in the received HEAD_AD_MSG. Cluster heads are evenly distributed across 
the system. Compared to LEACH, the proposed protocol, EECS, improves the network 
lifetime by 35%. EECS focuses primarily on the cluster setup algorithm and does not spe-
cifically address the data transmission phase. It is fully distributed, and cluster heads are 
randomly distributed in the system. The approach aims to evenly distribute the load among 
cluster heads using a weighted function. The competition process among cluster heads is 
localized, eliminating the need for iterations and reducing message overhead. Simulation 
results demonstrate that EECS increases the system lifetime by 135% compared to the 
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LEACH protocol, with power utilization at 93% in EECS and 53% in LEACH. The control 
message complexity of the process is O(N), where N is the numerals of fork in the system. 
In each Rcompete, there is at most one cluster head. The sequence diagram represents the 
main phases and interactions in the Power Efficient Partitioning or cluster Scheme (EECS) 
protocol, including the cluster head selection phase, the competition for the cluster head 
role, and the cluster establishment phase. It illustrates the interactions between sensor fork, 
cluster heads, base fork, and the sink station.

3.3  Clustering Routing Protocol

A communication protocol designed specifically for wireless sensor networks (WSNs), in 
which sensing units are grouped into clusters, is known as a division or grouping routing 
system. The network’s scalability, power efficiency, and overall system performance are 
all enhanced by this method. Units are grouped into clusters in these protocols, and each 
cluster has a designated cluster head (CH) or cluster leader who is in charge of managing 
communication between the cluster and the base station (BS).

A dividing or grouping routing protocol’s major objective is to promote effective data 
consolidation, routing, and communication inside the network by making use of the clus-
ters’ hierarchical structure. Data from member units are consolidated by cluster leaders, 
who also decide on routing and send data to the base station. The routing protocol reduces 

Fig. 5  EECS protocol sequence diagram
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power consumption by splitting or grouping in order to reduce long-distance transfers and 
enable localized data processing inside the clusters.

For WSNs, a number of division or grouping routing methods have been proposed, each 
with unique properties, benefits, and drawbacks. Several frequently used procedures are as 
follows:

a. LEACH (Low-Power Adaptive Clustering Hierarchy) is a well-known and commonly 
used routing technology for grouping or splitting traffic. It functions in a randomized 
fashion, allowing sensor units to alternately serve as cluster leaders to divide the net-
work’s power demand more equitably [1].

b. HEED (Hybrid Power-Efficient Distributed Clustering): HEED is a distributed grouping 
or splitting protocol that creates clusters by taking into account both node proximity 
and remaining power. Its goal is to improve load balancing and extend the lifespan of 
the network by dynamically choosing cluster leaders [37].

c. A chain-based grouping technique called PEGASIS (Power-Efficient Gathering in Sen-
sor Information Systems) uses units to transfer data to the base station. By leveraging 
data consolidation and targeted communication across the chain, electricity consumption 
is decreased.

d. SEP (Stable Election Protocol): SEP introduces the idea of stable units, which are units 
with greater remaining power and longer network connectivity. SEP is a division or 
grouping protocol. To increase network stability and lengthen the network’s lifespan, 
stable units are elected as cluster leaders [3].

e. Threshold-sensitive Power Efficient Sensor Network Protocol (TEEN): TEEN is a 
grouping or division protocol that was created especially for event-driven applications. 
To assess whether a unit should become a cluster leader or a follower, it uses several 
thresholds [42].

These dividing or grouping routing protocols offer different trade-offs between power effi-
ciency, network scalability, and system performance. The choice of an appropriate protocol 
depends on the specific requirements of the application, the characteristics of the network, 
and the power limitations of the wireless sensor network.

3.3.1  Sequence Diagram for Cluster Routing Protocol

The selection and setup of a partitioning or cluster routing protocol is shown in this 
sequence diagram as an interaction between the user, system, partitioning or cluster rout-
ing protocol, and network parameters. The system fetches the available protocols, presents 
them to the user, and then takes the user’s option after receiving their request to choose a 
protocol. Following the selection of the protocol, the system gets the network parameters, 
determines the best configuration, and sets the configuration for the partitioning or cluster 
routing protocol. The partitioning or clustering procedure finally starts. The Cluster Rout-
ing Protocol’s sequence diagram is shown in Fig. 6.

3.4  Network Parameters

The construction and optimization of communication networks heavily depend on net-
work characteristics. The performance and effectiveness of network operations are sig-
nificantly influenced by several factors, including bandwidth, latency, transmission power, 
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and routing protocols. For optimum network performance, resource usage, and overall sys-
tem operation, network parameters must be managed correctly. The action of controlling 
a certain network parameter is shown in the activity diagram. The process of managing 
the parameter, from defining it through storing it for later usage, is shown visually in this 
figure. Decision points and conditional branching are included in the graphic, emphasizing 
the value of taking into account current parameters, computing new ones when necessary, 
and managing any mistakes throughout the calculation or adjustment process.

Network administrators or system engineers can systematically control network param-
eters by following the activity diagram (Fig. 7), assuring their correctness and relevance 
to the network’s present status. This method makes it possible to adjust and optimize 
parameter settings in a timely manner while still maintaining the network’s stability and 

Fig. 6  Sequence diagram for cluster routing protocol

Fig. 7  Process of managing network parameters
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effectiveness. It is important to note that the supplied activity diagram is only an exam-
ple and may be altered to reflect the precise network parameter management procedure in 
your situation. Depending on the complexity of the parameter and the related management 
procedures, additional stages, decision points, or actions may need to be introduced. The 
activity diagram, in general, provides a visual reference for successfully controlling net-
work settings, ensuring that the network runs at its optimal performance by maintaining.

Figure 7’s activity diagram (Fig. 7) depicts the steps involved in controlling network set-
tings. The first step is to define the network parameter and collect the relevant data. Then, 
it determines if the parameter is present previously. If so, the current parameter is applied. 
If not, a computation is performed on the parameter, and if it is successful, the parameter 
is saved. The figure illustrates the option of modifying the computation and trying again if 
it fails. The parameter is saved if the adjusted computation is successful. If not, an error is 
reported. After the parameter has been successfully saved or an error has been detected, the 
diagram is finished.

3.5  Cluster Head Selection Algorithms

A significant topic covered in the current literature on wireless sensor networks (WSNs) is 
the cluster head selection technique. In different research investigations, several techniques 
for selecting cluster heads within a network have been developed. These algorithms seek 
to maximize communication dependability, energy efficiency, and network performance. 
The Low-Energy Adaptive Clustering Hierarchy (LEACH) method is one often discussed 
algorithm in the literature. LEACH chooses cluster heads in a randomized manner, allow-
ing sensor nodes to alternately assume the function of a cluster head. The lifespan of the 
network is increased by this distributed algorithm’s guarantee of equitable energy distribu-
tion. The Stable Election Protocol (SEP) is a different algorithm that has received a lot of 
research. Stable nodes, which have greater residual power and greater network connection, 
are a concept introduced by SEP. To increase network stability and lengthen network life-
time, these stable nodes are chosen as cluster heads. Other cluster head selection methods 
have been put out in the literature in addition to LEACH and SEP. Each algorithm has dis-
tinct qualities and benefits of its own. To choose the best cluster heads, certain algorithms 
take into account factors including node proximity, residual power, communication range, 
and network connectivity. Additionally, machine learning-based strategies for cluster head 
selection have been investigated by researchers. Based on different inputs, including node 
features, network circumstances, and energy levels, these algorithms use data-driven meth-
odologies to make informed judgments on which nodes should become cluster chiefs. A 
cluster head selection algorithm is chosen based on the WSN application’s unique needs, 
network architecture, and energy limitations. To enhance cluster head selection and maxi-
mize network performance in wireless sensor networks, researchers keep investigating and 
creating new algorithms.

Numerous cluster head selection algorithms that make use of optimization approaches 
are presented in the literature on wireless sensor networks (WSNs). These algorithms use 
optimization methods to increase system performance overall, increase network lifetime, 
and improve network efficiency. The Particle Swarm Optimization (PSO) [21] technique 
is one often discussed optimization approach used for cluster head selection. PSO is a 
population-based optimization method that draws its inspiration from the social behavior 
of fish schools and bird flocks. It uses a swarm of particles to iteratively search the solu-
tion space for the best cluster head candidates based on fitness functions that take network 
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connection, residual energy, and distance to the base station into account. The Genetic 
approach (GA) is another optimization approach used for cluster head selection in WSNs. 
GA is a metaheuristic algorithm that draws inspiration from genetics and natural selection. 
In order to develop the population toward better answers, it entails establishing a popu-
lation of possible solutions and executing selection, crossover, and mutation procedures 
repeatedly.

Ant Colony Optimization (ACO) [26] techniques have also been investigated for WSN 
cluster head selection. For the purpose of determining the best routes and answers, ACO 
algorithms mimic the foraging activity of ants. ACO algorithms enable nodes to deposit 
pheromone trails signifying their suitability as cluster head candidates in the context of 
cluster head selection. These pheromone trails are used by other nodes to choose cluster 
heads based on criteria including residual energy, base station distance, and data aggre-
gation capabilities. For cluster head selection in WSNs, researchers have also looked at 
different optimization methods as the Firefly Algorithm (FA) [4], Grey Wolf Optimizer 
(GWO) [19], and Artificial Bee Colony (ABC) algorithm. These algorithms go through 
a variety of fitness functions and network characteristics to identify the best candidates 
for cluster heads. A particular optimization technique for cluster head selection is chosen 
based on the WSN’s features, energy limitations, network architecture, and the applica-
tion’s unique goals. The performance and energy efficiency of wireless sensor networks are 
being improved by researchers as they continue to investigate and create novel optimiza-
tion-based cluster head selection methods.

3.5.1  Sequence Diagram for Cluster Head Selection Algorithms

This flowchart (Fig. 8) shows how a sensor node interacts with the cluster head selection 
algorithm, the cluster head routing protocol, and the cluster head during the selection 
process. The request to choose a cluster head is made by the sensor node. The cluster 

Fig. 8  Sequence diagram for cluster head selection algorithms
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head selection method, which chooses an appropriate fork for the cluster head role, is 
called upon by the partitioning or cluster routing protocol. The eligible fork is then 
assessed, and the outcomes are given to the cluster routing protocol or partitioning pro-
tocol. The partitioning or cluster routing protocol chooses a node as the cluster head 
based on the findings of the evaluation. After that, the chosen node is designated as the 
cluster head, and the cluster head informs the sensor node of its new position.

3.6  Cluster Formation Algorithm

Various cluster formation algorithms that utilize optimization approaches are covered in 
the literature on wireless sensor networks (WSNs). In order to create effective and ideal 
cluster formations inside WSNs, these algorithms take into account variables including 
energy efficiency, network scalability, and overall system performance. The K-means 
method is a well-known optimization technique for cluster building. Based on the sen-
sor nodes’ closeness to centroid points, this algorithm clusters the sensor nodes into 
groups using an iterative optimization technique. The K-means method guarantees that 
nodes within each cluster are tightly connected while maintaining a suitable separation 
between clusters by minimising the intra-cluster distance and increasing the inter-clus-
ter distance [34].

The Genetic approach (GA) is another well researched optimization approach for 
cluster creation. To find the best cluster forms, GA imitates natural evolution and genet-
ics. It iteratively enhances the clustering quality using selection, crossover, and muta-
tion procedures on a population of candidate solutions. The optimal cluster topologies 
are determined by fitness functions in GA-based cluster formation algorithms by con-
sidering variables like node density, residual energy, and communication range. Another 
optimization approach that has been used for cluster formation in WSNs is Particle 
Swarm Optimization (PSO). PSO searches the search space iteratively using a swarm of 
particles to identify the best cluster arrangements [26].

Every particle acts as a prospective cluster formation, and each one modifies its position 
in accordance with its prior knowledge as well as that of the swarm’s best solutions. PSO-
based cluster formation algorithms seek to create evenly dispersed and effective clusters by 
minimizing the total intra-cluster distance and maximizing inter-cluster distances.

Additionally, cluster formation in WSNs has been studied using Ant Colony Optimi-
zation (ACO) techniques. For the purpose of determining the best routes and answers, 
ACO algorithms mimic the foraging activity of ants. ACO algorithms enable nodes 
to leave behind pheromone trails that indicate whether they would make good cluster 
heads or cluster members in the context of cluster formation. Nodes create clusters with 
balanced energy consumption and ideal connection by following these pheromone trails. 
For cluster formation in WSNs, several optimization methods have also been investi-
gated, including the Firefly Algorithm (FA), Grey Wolf Optimizer (GWO), and Artifi-
cial Bee Colony (ABC) algorithm. These methods optimize cluster configurations based 
on multiple fitness factors and network characteristics using novel techniques and math-
ematical models. The WSN application’s unique needs, network architecture, energy 
restrictions, and intended outcomes all play a role in the decision of which optimization 
method to use for cluster creation. To increase the effectiveness and performance of 
wireless sensor networks, researchers are looking into and creating new optimization-
based cluster formation methods [26, 34–36, 43].
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3.6.1  Sequence Diagram for Cluster Formation

The interactions that take place between a sensor node, the partitioning or cluster rout-
ing protocol, the cluster formation algorithm, the cluster head, and the cluster mem-
bers are shown in this flowchart (Fig. 9). The request to start cluster formation is made 
by the sensor node. The cluster formation algorithm, which chooses suitable forks for 
cluster creation, is invoked by the partitioning or cluster routing protocol. The par-
titioning or cluster routing protocol is then given the evaluation results of the eligi-
ble fork. The partitioning or cluster routing protocol chooses fork as cluster members 
based on the evaluation findings. The chosen fork joins the cluster whose cluster head 
is in charge.

3.7  A Taxonomy of Approaches to Power Saving in Sensor Networks

Applications including environmental monitoring, surveillance, and healthcare all depend 
on sensor networks. The limited power resources accessible to sensor fork, however, pro-
vide a significant challenge to the robustness and effectiveness of these networks [44]. In 
response, researchers have developed a number of techniques to reduce power consumption 
and improve sensor network performance [45]. The goal of this study is to provide a thor-
ough taxonomy of these techniques, giving a well-organized overview of the many tactics 
used in this field.

The table below (Table  1) outlines the various approaches to power saving in sensor 
networks and provides a brief description of each approach.

Researchers and practitioners can better understand the power-saving methods available 
for sensor networks by classifying these approaches [37]. Additionally, this taxonomy can 
be a useful tool for determining the best techniques based on the requirements of a certain 
application and the limitations of the network. In conclusion, the proper functioning and 

Fig. 9  Sequence diagram for cluster formation
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durability of sensor networks depend on the efficient use of power resources. Researchers 
may develop ways to minimize power usage, improve network performance, and increase 
the lifespan of sensor networks by utilizing power-saving techniques from a variety of 

Table 1  Taxonomy of approaches to power saving in sensor networks

Approach Description

Duty cycling Periodic sleep: the fork alternates between periods of activity 
and sleep

Random sleep: fork out random naps of a particular length
Adaptive sleep: forks change their sleep pattern according on 

the state of the network
Data aggregation Spatial aggregation: to cut down on transmission, aggregate 

data from neighboring forks
Temporal aggregation: to lower transmission frequency, fork 

aggregate data over time
Compressive sensing: to minimize transmission size, forks 

capture compressed data
Network topology control Node placement: the best location for the fork to save energy

Node selection: selecting a subset of fork to perform sensing 
and routing

Data routing optimization: finding power-efficient routes for 
data transmission

Communication protocols Low-power listening: fork listen for communication only dur-
ing specific time slots

TDMA/CDMA: time or code division multiple access to 
reduce collisions

Data compression: reducing data size before transmission
Power harvesting Solar power: harvesting power from solar panels

Kinetic power: harvesting power from node movement or 
vibrations

RF power: harvesting power from ambient RF signals
Power-efficient MAC protocols IEEE 802.15.4: low-power MAC protocol for wireless sensor 

networks
SMAC: sensor medium access control protocol with sleep 

scheduling
B-MAC: a synchronization and duty-cycling MAC protocol 

with beacon support
Routing protocols LEACH: cluster-based routing using low-power adaptive 

partitioning or cluster hierarchy
Threshold-sensitive power efficient sensor network protocol is 

referred to as TEEN
Ad hoc on-demand distance vector, or AODV, is used for on-

demand routing
Power-efficient data storage and processing Data compression: reducing the amount of space and time 

needed for processing
Data fusion: combining redundant data to speed up transmis-

sion and minimize processing
Data caching: reducing communication by storing often acces-

sible data locally
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categories [38]. This taxonomy is a useful resource for examining the many different meth-
ods for power reduction in sensor networks.

3.8  Taxonomy of Approaches to Power‑Efficient Cluster Head Selection in Wireless 
Sensor Networks Using Nature‑Inspired Algorithms

A large number of sensor nodes work together in Wireless Sensor Networks (WSNs) to 
collect and relay data to a centralized base station. The selection of cluster heads, who are 
responsible for collecting and sending data in WSNs, is a crucial factor in lowering power 
consumption and increasing network lifetime [39].

To address this issue, researchers have looked at the usage of nature-inspired algorithms 
for WSN cluster head selection that is power-efficient. Several strategies that are inspired 
by nature are described in this study to enhance the power efficiency of cluster head selec-
tion in WSNs [46]. A taxonomy of numerous strategies that employ algorithms drawn from 
nature for power-efficient cluster head selection in WSNs is presented in the table below 
(Table  2). Each strategy is briefly explained, emphasizing its unique characteristics and 
advantages.

3.9  Nature‑Inspired Algorithms Used in Wireless Sensor Networks (WSN)

WSNs are widely used for a variety of purposes, including as environmental monitoring, 
smart cities, and industrial automation. WSNs face a serious challenge in increasing sys-
tem performance while saving power since sensor forks frequently have limited power 
resources. In order to solve this issue, researchers have looked into nature-inspired algo-
rithms, which draw inspiration from natural phenomena and processes [47].

Table 2  Taxonomy of approaches to power-efficient cluster head selection in WSNs using nature-inspired 
algorithms

Taxonomy category Description

Nature-inspired algorithm The nature-inspired algorithm used for cluster head selection, such as Ant 
Colony Optimization or Particle Swarm Optimization

Fitness function The objective function used to evaluate the fitness of each sensor node as a 
potential cluster head

Power awareness Whether the algorithm takes into account the power level of sensor fork in the 
selection process

Communication overhead The impact of cluster head selection on the overall communication overhead in 
the network

Cluster formation How the algorithm forms clusters and assigns non-cluster head fork to their 
respective cluster heads

Cluster head rotation Whether the algorithm supports dynamic rotation of cluster heads to distribute 
the power consumption evenly

Network lifetime The effect of the approach on the overall network lifetime in terms of power 
efficiency

Scalability How well the approach scales with increasing network size or numerals of 
sensor fork

Simulation environment The simulation tool or platform used for evaluating the performance of the 
approach
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Nature-inspired algorithms simulate the behavior and dynamics of natural systems, 
such as the foraging activity of ants, the flocking behavior of birds, or the evolution-
ary principles of genetic inheritance. By imitating these natural processes, these algo-
rithms provide innovative and workable solutions to significant WSN problems includ-
ing power-efficient cluster formation, routing, localization, and data aggregation. The 
focus of this research is on an investigation of nature-inspired algorithms that have been 
successfully applied in WSNs [48]. These algorithms employ natural intelligence to 
enhance the effectiveness of WSN operations in a variety of areas, including as power 
consumption, network connectivity, scalability, and fault tolerance. The Nature Inspired 
method utilized in WSN is shown in Table 3.

The taxonomy of nature-inspired algorithms used in WSNs includes well-known 
methods such as Particle Swarm Optimization, Ant Colony Optimization, Genetic Algo-
rithms, Artificial Bee Colony, Firefly Algorithm, Grey Wolf Optimizer, Cuckoo Search, 
Bat Algorithm, Whale Optimization Algorithm, Harmony Search, and many more. 
The necessity of comprehending each algorithm’s fundamental concepts and prospec-
tive applications is emphasized by the fact that each algorithm brings its own distinct 
advantages and qualities to bear on certain WSN difficulties. Researchers and practi-
tioners may learn a great deal about these nature-inspired algorithms’ applicability, 
performance, and limits in various WSN settings by examining and contrasting them 
[49]. This information may direct the selection and creation of suitable algorithms for 
particular WSN applications, eventually assisting in the creation of reliable and power-
efficient wireless sensor networks [50].

Table 3  Nature inspired algorithm used in WSN

Algorithm Description

Ant Colony Optimization Inspired by the foraging behavior of ants, it uses pheromone trails to find 
optimal paths or solutions in the network

Particle Swarm Optimization Mimics the collective behavior of a group of particles moving through a 
problem space to find optimal solutions

Genetic Algorithm Emulates the process of natural selection and evolution to iteratively 
improve solutions through crossover and mutation

Artificial Bee Colony Based on the foraging behavior of honeybees, it employs employed bees, 
onlooker bees, and scout bees for exploration

Firefly Algorithm Inspired by the flashing patterns of fireflies, it uses the attractiveness of 
fireflies to optimize solutions

Grey Wolf Optimizer Modeled after the hierarchical social structure of grey wolves, it features 
alpha, beta, delta, and omega wolf agents

Cuckoo Search Draws inspiration from the brood parasitism of cuckoo birds to search for 
optimal solutions by replacing eggs in nests

Bat Algorithm Inspired by the echolocation behavior of bats, it uses frequency and loud-
ness modulation to optimize solutions

Whale Optimization Algorithm Inspired by the cooperative hunting behavior of humpback whales, it uses 
encircling and bubble-net hunting strategies

Harmony Search Mimics the process of creating musical harmony to find optimal solutions 
through improvisation and adjustment
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3.9.1  Taxonomy of Approaches to Energy‑Efficient Cluster Formation in Wireless 
Sensor Networks Using Nature‑Inspired Algorithms

Applications for wireless sensor networks (WSNs) include environmental monitoring, 
industrial automation, and medical care. However, due to the constrained power capacities 
of sensor fork in WSNs, attaining power efficiency is a significant problem. Effective clus-
ter formation, aided by algorithms inspired by nature, has emerged as a possible response 
to this problem. These methods maximize cluster formation in WSNs by taking cues from 
nature, with the goals of balancing power consumption, extending network lifetime, and 
enhancing system performance in general [40].

A taxonomy of strategies for power-efficient cluster creation in WSNs utilizing algo-
rithms inspired by nature is shown in the following Table 4. The categories of the taxon-
omy provide a thorough understanding of the various aspects of cluster formation, such as 
the selection of algorithms inspired by nature, fitness functions for evaluating node fitness, 
power-efficiency considerations, cluster head selection techniques, mechanisms for cluster 
formation, cluster size determination, cluster stability, communication overhead, load bal-
ancing strategies, impact on network lifetime, and others [41].

By looking at these taxonomy categories, researchers and practitioners may gain greater 
insight into the various methods employed to maximize cluster formation in WSNs [51]. 
This taxonomy is an effective tool for understanding the key components and aspects 
involved in the development of power-efficient clusters, aiding in the selection of the most 
suitable approach depending on specific network needs and objectives.

By classifying nature-inspired algorithms, researchers and practitioners may get more 
knowledge about different approaches for power-efficient cluster head selection in WSNs 
[52, 53]. It is much simpler to select the optimal algorithm based on the requirements of a 
particular application and the characteristics of the network when using this taxonomy to 
understand the benefits and drawbacks of each technique [54]. In order to maximize power 
consumption and lengthen the lifespan of wireless sensor networks, it is crucial to make 
the right choice of power-efficient cluster heads. The efficacy of cluster head selection can 
be increased by using techniques inspired by nature. In order to find the most effective 
algorithm for WSNs’ power-efficient cluster head selection, researchers can explore and 
select from the taxonomy’s comprehensive review of several approaches [42].

In the research that is being presented, a brand-new cluster building method for Wireless 
Sensor Networks (WSNs) is introduced. This method addresses many network optimiza-
tion difficulties. The originality of the article resides in its multi-phase methodology, which 
begins with the initialization of network parameters like the number of sensor nodes, the 
communication range, and the energy levels. Notably, the method dynamically positions 
nodes in the network area intelligently, ensuring sufficient starting energy and communica-
tion range for the best performance [55]. Nodes advertise their eligibility to possible cluster 
leaders while also evaluating their candidacy based on variables like energy level and prox-
imity to the base station during the cluster head selection process. By reducing transmis-
sions that use a lot of energy, this dynamic selection procedure increases energy efficiency.

Another important addition is cluster maintenance, which is accomplished with reliable 
processes. To keep members informed and preserve cluster integrity, cluster leaders issue 
brief announcements, which lower communication costs and delay. The end-to-end delay 
and overall network throughput are enhanced by this method [56]. The algorithm also 
demonstrates versatility to a variety of application demands, switching between real-time 
reporting and energy-efficient data aggregation with ease, providing prompt data delivery.
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Table 4  Taxonomy of strategies for energy-efficient cluster creation in WSNs utilizing algorithms inspired 
by nature

Taxonomy category Description

Nature-inspired algorithm This category emphasizes the nature-inspired approach used in wireless sensor 
networks to generate clusters. Popular options for optimizing cluster forma-
tion include ant colony optimization and particle swarm optimization, which 
take their cues from natural events

Fitness function During the cluster building process, the fitness function evaluates the adequacy 
of each sensor node. It assesses a number of factors, including connection, 
power levels, and node proximity, to determine the fork’s suitability as pro-
spective cluster heads

Power efficiency This category focuses on strategies that give the cluster formation phase’s 
power efficiency top priority. By carefully choosing cluster heads and arrang-
ing the network topology appropriately, the approaches used seek to reduce 
power consumption, increase network lifetime, and maximize overall system 
performance

Cluster head selection Cluster head selection describes the method of choosing appropriate forks to 
serve as cluster heads inside the wireless sensor network. Different methods 
use various variables, like as power levels, base station distance, or node 
density, to choose the best candidates for cluster head locations

Cluster formation The process through which clusters are created in a network is referred to as 
cluster creation. Based on predetermined criteria or algorithms, it entails 
assigning non-cluster head forks to their corresponding cluster heads. To 
enable effective cluster formation, these criteria take into account variables 
including communication range, power limitations, and network structure

Cluster size The cluster size category investigates how methods choose the proper fork 
numbers to be given to each cluster. Different approaches may be used; some 
try to create equal-sized clusters to spread the workload equally, while others 
dynamically change cluster sizes in response to factors like power availability 
or node density

Cluster stability Cluster stability is essential for long-term, dependable network performance. In 
order to increase the stability and resilience of the created clusters, methods 
in this category concentrate on reducing cluster head changes or putting in 
place mechanisms to deal with node failures, rearrangement, and sustaining 
connection

Communication overhead Cluster formation’s effect on the total communication burden of the network is 
taken into account by communication overhead. During the cluster forma-
tion process, efficient techniques strive to avoid needless communication and 
control messages, optimize resource use, and decrease network congestion

Load balancing To avoid individual forks from being overloaded or using up their power 
resources more quickly, load balancing solutions divide the burden across the 
cluster heads in an equitable manner. These techniques aim to balance out 
power usage across the network, extending its lifespan and increasing overall 
effectiveness

Network lifetime This classification evaluates how the cluster creation strategies affect the net-
work’s total lifespan. By saving energy, effectively allocating resources, and 
preventing early node failure, power-efficient cluster formation approaches 
seek to optimize the network’s usefulness and operating time

Scalability Scalability describes how successfully a method adjusts to network growth, 
taking into account a growing number of sensor nodes or a growing network 
size. Even in massive wireless sensor networks, scalable cluster formation 
technologies demonstrate the potential to maintain effective operations and 
power saving
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The unique contribution of the article also consists of a performance evaluation stage, 
which comprises simulations and tests to evaluate metrics like network coverage, energy 
consumption, cluster formation speed, and data transmission effectiveness. The suggested 
method’s superiority in a variety of parameters may be seen when compared to existing 
algorithms like LEACH, SEP, and HEED. Notably, the method regularly beats various 
alternatives in terms of the number of active nodes, energy used, end-to-end delay, and 
throughput. This thorough performance comparison shows how useful and efficient the 
suggested method is.

In conclusion, the suggested algorithm presents dynamic cluster formation, flexible 
cluster head selection, dependable cluster maintenance, application flexibility, and thor-
ough performance evaluation. Together, these contributions tackle issues with network 
performance optimization, effective data aggregation, and energy conservation. The com-
parison with current algorithms reinforces the paper’s originality and practical value in 
improving WSN effectiveness and performance.

3.10  Simulation Setup

Due to its capacity to observe and gather information from the physical world, wireless 
sensor networks (WSNs) have attracted substantial attention in several sectors. WSNs must 
be effectively managed and optimized to function reliably and sparingly. Several factors, 
including network settings, partitioning or cluster protocols, and power usage, are signifi-
cant in this situation.

Wireless sensor networks (WSNs) have gotten a lot of interest because of their abil-
ity to watch and collect data from the real world in a variety of fields. To operate reliably 
and with the least amount of power consumption, WSNs must be efficiently controlled and 
optimized. In this case, several factors are important, including network configuration, par-
titioning or cluster protocols, and power consumption [39]. Numerous important WSN-
related issues, such as simulation setup, network parameters, partitioning or clustering 
techniques, and power calculations are covered in the introduction to the content above. 
These factors when combined have an impact on our understanding and study of WSN per-
formance, system lifespan, and resource usage [7].

In the simulation setup, MATLAB is used as a simulation tool to test various protocols 
and procedures in heterogeneous WSNs. The simulations are built on the selected network 
field size, node count, and packet size. Power metrics that describe the power consumption 
characteristics during data transmission and reception are also considered, including Eelec, 
Efs, and Eamp. The D0 threshold interval and the E0 initial power of normal fork, com-
bined with these parameters, further mold the simulation environment. Different partition-
ing or cluster techniques are evaluated in this arrangement to improve network performance 
and power efficiency. Each protocol, which addresses certain difficulties and objectives of 

Table 4  (continued)

Taxonomy category Description

Simulation environment The software program or platform used to examine and assess the effectiveness 
of the cluster formation procedures is referred to as the simulation environ-
ment. NS-2, OMNeT +  + , MATLAB, or customized WSN simulators are 
common simulation tools used in research studies that offer a controlled and 
repeatable environment for studying and comparing various methodologies
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partitioning or cluster in WSNs, is investigated, including Hybrid Power-Efficient Distrib-
uted Partitioning or cluster (HEED), Distributed Weight-Based Power-Efficient Hierarchi-
cal Partitioning or cluster (DWEHC), and Hybrid Partitioning or cluster Approach (HCA). 
These protocols use various processes and algorithms for load balancing, cluster creation, 
and cluster head selection. The content also covers how important WSN-related metrics 
and parameters are calculated. The numerals of dead and living fork, the choice of the 
cluster head, packet transmission to the base station and cluster head, power dissipation, 
and needs for cluster head election and cluster formation are all calculated using the speci-
fied formulas. The performance, power use, and efficiency of WSNs may be better under-
stood by researchers and practitioners by taking into account certain simulation settings, 
network characteristics, partitioning or cluster procedures, and calculation formulae. This 
knowledge makes it possible to optimize network performance, resource management, and 
decision-making for a range of applications in industries including industrial automation, 
healthcare, and environmental monitoring.

A overview of the simulation setup and the performance metrics taken into account 
while assessing the effectiveness of various protocols in the heterogeneous wireless sensor 
network (HWSN) is given in the table. It emphasizes the important variables and traits that 
were utilized in the simulation, such as the numerals of sensor fork, network size, location 
of sink stations, beginning power levels of fork, biased amount of forecasting power, and 
wireless channel concerns. It also describes the performance measures, such as the numer-
als of fork that are still active, their power levels, and the numerals of fork that left in the 
first round, that are used to evaluate the effectiveness of the protocols. These parameters 
make it possible to assess node stability, power consumption trends, and node survival 
(Table 5, 6, 7).

3.10.1  Parameters Needed for the Calculation

Calculations and formulae are used by wireless sensor networks (WSNs) to maximize 
network efficiency and power use. The numerals of living and dead fork, the choice of 
the cluster head, and packet transmission metrics are important computations. The power 
needs for cluster head election and creation as well as power dissipation every round is 
determined by power-related formulae. In WSNs, these computations direct resource allo-
cation and decision-making. Researchers and professionals may learn more about network 

Table 5  Parameter chosen S. no Parameters

1 Numerals of dead fork
2 Numerals of alive fork
3 Cluster head selection
4 Packets sent to base station
5 Packets sent to cluster head
6 Power dissipated per round
7 Power required per round for cluster head election
8 Power required per round for cluster formation
9 E0 (original power of normal fork)
10 Power consumption per node for cluster formation
11 Power consumption per node for cluster head election
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dependability, power efficiency, and system longevity by using these calculations. The 
design and optimization of WSNs for diverse applications is made easier by these calcula-
tions. In wireless sensor networks, knowing and using these algorithms improve network 
efficiency and resource use.

To calculate the numerals of neighboring fork in a wireless sensor network, typically 
need to consider the communication range or transmission range of the sensor fork. Here is 
a general approach to calculate the numerals of neighboring fork:

a. Determine the communication range (R_comm) of each sensor node in the network. The 
communication range defines the maximum distance up to which a node can transmit 
and receive signals.

b. For each sensor node, measure the distance to all other fork in the network.
c. Compare the distance between each pair of fork with the communication range (R_

comm). If the distance is less than or equal to the communication range, consider the 
fork as neighbors.

d. Count the numerals of fork that satisfy the condition in step 3 for each sensor node. This 
will give you the numerals of neighboring fork for each node in the network.

e. Here’s a formula to calculate the numerals of neighboring fork:
f. Numerals of Neighboring Fork = Count(dist <  = R_comm)
g. Where `dist` represents the distance between each pair of fork, and `R_comm` is the 

communication range.

3.10.2  Proposed Algorithm for an Energy Conservation Model in Wireless Sensor 
Networks

There are multiple phases in the suggested cluster building technique for Wireless Sen-
sor Networks (WSNs). The network’s settings, such as the number of sensor nodes, 
communication range, and energy levels, are first initialized. In order to provide suf-
ficient starting energy levels and communication range with other nodes, the nodes are 
then strategically placed throughout the network region. Following that, nodes evaluate 
their candidacy based on factors like energy level and distance to the base station during 
the cluster head selection process. A node advertises its eligibility to other nodes if it 
meets the requirements to be a possible cluster leader. Nodes then receive these mes-
sages and compare them in order to decide which cluster head is the nearest or most 

Table 6  Simulation parameter Parameters Values

Network field 100 × 100
Numerals of fork 500
Packet size 4000 bits
Eelec (power for transmitting 1 bit) 50 nJ/bit
Efs (free space power) 10 nJ/bit/m2

Eamp (amplification power) 0.0013 pJ/bit/m4

EDA (power for data aggregation) 5 nJ/bit/signal
D0 (threshold interval) 70 m
E0 (original power of normal fork) 0.5 J
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appropriate depending on specified criteria like energy level or signal intensity. then 
the nodes. The nodes then join the cluster of the selected cluster head by sending an 
acknowledgment message.

Cluster maintenance happens after cluster formation. Cluster leaders deliver announce-
ments on a recurring basis to update cluster members on their status and confirm their 
attendance. On the other side, cluster members provide information to their individual 
cluster chiefs. Before sending the aggregated data to the base station, the cluster heads 
aggregate, analyze, or compress the data. Periodic analyses based on variables like energy 
level, connection, or member node presence are carried out to guarantee cluster stability. A 
fresh cluster head election procedure is started to preserve cluster stability if a cluster head 
becomes unreliable or has low energy.

The method also incorporates a performance evaluation stage where simulations or 
actual tests are conducted to assess parameters like network coverage, energy use, cluster 
formation speed, or data transmission effectiveness. The algorithm settings or metrics can 
be fine-tuned considering the findings. Techniques like genetic algorithms, particle swarm 
optimization, or ant colony optimization can be investigated to improve the cluster for-
mation process. These optimization techniques can increase load balancing, network scal-
ability, or energy efficiency. Additionally, by including mechanisms for re-clustering, node 
mobility, or re-election of cluster heads, the method may be adjusted to dynamic network 
conditions or shifting energy levels.

By following this proposed algorithm, WSNs can establish efficient clusters that facili-
tate data aggregation, enhance energy conservation, and optimize overall network perfor-
mance. Figure 10 depicts the flowchart for proposed algorithm.

By running network simulations with MATLAB, which has a wealth of tools for effi-
ciently executing the suggested strategy, the supplied methodology was assessed and exam-
ined. Nodes with identical beginning energy levels were placed at random in the simula-
tions. The suggested method was compared to several current algorithms, such as LEACH, 
SEP, and HEED. The suggested technique was compared to current ones using several fac-
tors, including packet delivery and loss ratio, throughput, and average end-to-end latency 
during packet transmission. A thorough comparison study was carried out to ascertain the 
performance enhancements and benefits of the suggested strategy by analyzing these met-
rics and contrasting them between it and the algorithms.

Number of Active Nodes in the Network The number of active nodes is calculated in 
our research by taking the packet transmission rate per second into account. We may evalu-
ate the nodes actively transmitting packets within the network using this measure. We can 
assess the amount of node activity and count the number of nodes actively involved in data 
transmission by keeping track of the number of packets delivered each second. Given that 
it sheds light on the dynamics of node activity and the use of network resources, this infor-
mation is essential for comprehending the network’s overall efficiency and performance.

The proposed approach demonstrates the higher number of active nodes in the network 
as compared to other approaches. We calculate the number of active nodes based on the 
packet transmission rate per second. For instance, when the transmission data rate is set 
to 500 packets per second, the packet processing ratio for the proposed approach is 75%, 
while HEED experiences 33% packet loss, SEP has 24%, and LEACH has the highest with 
18%. Similarly, with 600 nodes, LEACH exhibits 18% packet processing, SEP experi-
ences 24%, HEED has 30%, and the proposed approach demonstrates the highest with 80% 
packet processing in the communication.

The original LEACH approach, lacking a hierarchical approach for energy conservation, 
resulted in a lesser rate of packet processing rate. These factors contribute to the superiority 
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of the proposed approach over others in terms of maximizing the packet processing request 
per second (Fig. 11).

Energy Consumption In this analysis, we are examining the energy consumption from 
source to destination for each packet transmission. The proposed approach consumes less 
energy than other methods. Unlike those methods, which change the cluster head and form 
new clusters, our approach minimizes the number of cluster formations throughout the 
entire process. This reduces the energy required for changing the parent node and decreases 
the number of retransmissions, resulting in reduced energy consumption. LEACH, SEP, 
and HEAD experience higher retransmission rates compared to the proposed approach, 
leading to increased energy usage. Figure 12 depicts the energy consumption across differ-
ent traffic load scenarios. Even with a traffic load of 500 packets per second, our approach 
exhibits lower energy consumption than alternative methods.

End-to-End Delay The end-to-end delay refers to the total time taken for a data 
packet to travel from the sender to the root node. It includes the time starting from 
packet generation until it is received by the root node. In order to reduce this delay, we 

Fig. 10  Flowchart
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employ an offloading strategy where instead of returning to the child node to select a 
new parent and perform retransmission, we offload from the parent node.

The LEACH algorithm lacks a mechanism to control delay, resulting in higher delay 
compared to the SEP, HEED, and proposed algorithms. Figure 13 illustrates the delay 
per packet at different simulation times. It is observed that the proposed approach exhib-
its a variation in delay per packet ranging from 1.5 to 2.5, which is lower compared to 
other protocols documented in the literature.

Throughput Bytes received by the root node within a predetermined time limit are 
measured as throughput. Figure  14 shows that when there is less traffic, throughput 
rises. Although there is more traffic and packets, the suggested strategy still outperforms 
existing approaches in terms of throughput. Contrarily, LEACH struggles to handle 
increased traffic loads efficiently because it lacks a traffic control system.
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On the other hand, the suggested method may successfully manage times of heavy net-
work traffic when combined with SEP and HEED. The relationship between throughput 
and network node count is shown in Fig. 14. With respect to performance, the suggested 
method surpasses others by notably boosting throughput as network capacity expands. The 
suggested method consistently increases total throughput in both cases, which involve a 
greater number of nodes and more data flow.

3.10.3  Comparison of the Proposed Algorithm with the Existing Algorithm

The research given in this article concludes by highlighting the advantages of the suggested 
strategy for assessing and enhancing network performance. The suggested methodology 
shows a greater number of active nodes compared to other current approaches by counting 
the number of active nodes based on the packet transmission rate per second. This knowl-
edge is essential for comprehending the dynamics of node activity and resource use on 
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the network, which will ultimately improve the network’s overall effectiveness and perfor-
mance. The suggested strategy also shows advantages in terms of energy usage. The sug-
gested solution uses less energy than competing approaches since it minimizes the quantity 
of cluster formations and lessens the necessity for switching parent nodes and retransmis-
sions. Retransmission rates are greater for methods like LEACH, SEP, and HEAD, which 
results in more energy being used. The suggested technique greatly reduces the end-to-end 
latency, which gauges the entire amount of time needed for a data packet to transit from the 
sender to the root node. The suggested method significantly lowers time by using an off-
loading technique in which offloading takes place from the parent node rather than return-
ing to the child node. In contrast, the LEACH algorithm has larger delays compared to 
SEP, HEED, and the suggested technique and lacks a delay control mechanism. Even when 
there is a lot of traffic, the recommended strategy performs better in terms of throughput 
than current methods. In comparison to SEP and HEED, the suggested technique shows 
increased throughput as network capacity increases. On the other side, because there is no 
traffic management system, LEACH finds it difficult to efficiently handle growing traffic 
volumes.

While the research presents clustering techniques for Wireless Sensor Networks (WSNs) 
such as HEED, DWEHC, and HCA, it is praiseworthy that it does not provide a thorough 
critical analysis. Every algorithm has trade-offs and intrinsic restrictions that should be 
investigated. For example, HEED’s reliance on probabilistic techniques may make it dif-
ficult to scale, which could reduce its usefulness in larger networks. Scalability may be 
impacted by DWEHC’s dependence on weight-based hierarchical clustering, which could 
result in higher processing overhead. Despite its efficiency, HCA’s dependence on prede-
termined parameters may provide difficulties in dynamic contexts.

Important factors to consider include network performance, scalability, and adaptability. 
Because of its energy awareness, HEED might be more suited for situations where energy 
conservation is a top priority, but it might not perform as well in high-density installa-
tions. Although DWEHC’s load balancing promotes scalability, environments with lim-
ited resources may find it burdensome and difficult. HCA’s flexibility might be excellent 
in conditions of stability, but its dependence on preset parameters might provide problems 
in situations of change.

Real-world instances where one algorithm performs better than another include node 
density fluctuations, where HEED’s flexibility may be most useful, or scenarios requiring 
accurate load balancing, where DWEHC performs best. Comprehending these subtleties 
is crucial for practitioners who aim to match algorithmic decisions with particular deploy-
ment scenarios for the best possible WSN performance.

Overall, the suggested method provides a thorough response to important perfor-
mance measures, such as the quantity of active nodes, energy use, end-to-end latency, and 
throughput. It offers a viable alternative for maximizing network efficiency and attaining 
improved overall network performance due to its higher performance in these areas.

Wireless Sensor Networks (WSNs) have become essential building blocks for a variety 
of applications, from industrial automation to environmental monitoring. The distinctive 
qualities of WSNs, such as the necessity for effective data communication and the scar-
city of energy supplies, present substantial hurdles in assuring their long-term viability. 
Innovative methods that balance energy conservation and maintaining efficient network 
performance are needed to address these difficulties. By enabling real-time data gather-
ing, processing, and monitoring capabilities in a variety of applications, Wireless Sensor 
Networks (WSNs) have transformed a number of sectors. These networks have shown they 
can revolutionize the way information is acquired and used, from environmental sensing 



 A. Jyoti et al.

1 3

to healthcare management. To assure the best performance and lifespan of WSNs in real-
world applications, creative solutions are required due to the inherent obstacles of lim-
ited energy resources, communication limitations, and the requirement for efficient data 
handling.

3.10.3.1 Agricultural Monitoring System, as an Example Using the suggested cluster con-
struction approach in practice, a wireless sensor network was set up to monitor agriculture. 
The main goal was to keep an eye on the temperature, humidity, and soil moisture levels 
throughout a sizable agricultural area.

Effectiveness: The proposed cluster building approach was used with remarkable suc-
cess in this situation. The network accomplished effective data aggregation by carefully 
positioning nodes and autonomously creating clusters based on energy levels and proxim-
ity to the base station. This resulted in a decrease in the frequency of data transmissions, 
hence increasing the network’s useful life. The cluster maintenance process also made sure 
that cluster leaders immediately informed their members of status updates, improving data 
quality and integrity.

However, in this circumstance, there was a trade-off between energy efficiency and real-
time data reporting. This trade-off was highlighted in situations that called for quick moni-
toring of moisture variations. Determining sudden changes in soil moisture was slightly 
delayed as a result of the choice to combine data for energy efficiency. This trade-off high-
lighted the need to fine-tune the algorithm’s settings to find the ideal balance between 
energy efficiency and prompt data reporting, even if it was acceptable for the majority of 
agricultural applications.

3.10.3.2 Example 2: Scenario for Structural Health Monitoring The suggested cluster con-
struction approach was used to monitor the structural health of a bridge in another practical 
application. Nodes were placed at key locations to carefully monitor vibrations, temperature 
changes, and stress levels.

Effectiveness: In this situation, the proposed technique’s dynamic flexibility was clear. 
The algorithm’s versatility was crucial since the sensor network saw variations in energy 
levels brought on by shifting weather conditions. In order to maintain network stability, 
nodes with lower energy levels were better able to convey their status. This flexibility 
avoided cluster disruptions and preserved the accuracy of the structural data that had been 
gathered.

Trade-offs: Reacting to unexpected stressful situations on the bridge did present a trade-
off, though. Such incidents required surrounding nodes to deliver frequent updates in order 
to maintain timely monitoring. Increased energy consumption as a result of the increased 
data transmission frequency might shorten the life of the network. The configuration of the 
algorithm to dynamically transition between energy-efficient data aggregation and high-
frequency reporting necessary for in-the-moment monitoring of key events was a challenge 
for researchers.

These illustrations show how the suggested cluster construction approach can be used 
in various real-world circumstances. They emphasize the method’s efficacy as well as 
any potential trade-offs, highlighting the difficulty of striking a balance between energy 
efficiency and prompt event-driven data reporting. The analysis of these cases not only 
demonstrates the adaptability of the approach but also emphasizes the significance of opti-
mizing algorithm parameters to maximize network performance under various operational 
needs.
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